Sparse Networks-Based Speedup Technique for Proteins Betweenness Centrality Computation

نویسنده

  • Razvan Bocu
چکیده

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents the latest authors’ achievements regarding the analysis of the networks of proteins (interactome networks), by computing more efficiently the betweenness centrality measure. The paper introduces the concept of betweenness centrality, and then describes how betweenness computation can help the interactome network analysis. Current sequential implementations for the betweenness computation do not perform satisfactory in terms of execution times. The paper’s main contribution is centered towards introducing a speedup technique for the betweenness computation, based on modified shortest path algorithms for sparse graphs. Three optimized generic algorithms for betweenness computation are described and implemented, and their performance tested against real biological data, which is part of the IntAct dataset. Keywords—Betweenness centrality, interactome networks, proteinprotein interactions, sub-communities, sparse networks, speedup technique, IntAct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Divide-and-Conquer Algorithm for Betweenness Centrality

Given a graph G we define the betweenness centrality of a node v in V as the fraction of shortest paths between all node pairs in V that contain v. For this setting we describe Brandes++, a divide-and-conquer algorithm that can efficiently compute the exact values of betweenness scores. Brandes++ uses Brandes– the most widelyused algorithm for betweenness computation – as its subroutine. It ach...

متن کامل

A Graph Manipulations for Fast Centrality Computation

The betweenness and closeness metrics are widely used metrics in many network analysis applications. Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality computations faster is an important and well-studied problem. In this work, we propose the framework BADIOS which manipulates the graph by compressing it and splitting into pieces so that the cen...

متن کامل

Community Detection-based Analysis of the Human Interactome Network

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each pr...

متن کامل

Computing Betweenness Centrality for Small World Networks on a GPU

Although a graphics processing unit (GPU) is a specialized device tailored primarily for compute-intensive, highly dataparallel computations; significant acceleration can be achieved on memory-intensive graph algorithms as well. In this work, we investigate the performance of a graph algorithm for computing vertex betweenness centrality for small world networks on 2 NVIDIA Tesla and Fermi GPUs ...

متن کامل

Fast exact and approximate computation of betweenness centrality in social networks

Social networks have demonstrated in the last few years to be a powerful and flexible concept useful to represent and analyze data emerging from social interactions and social activities. The study of these networks can thus provide a deeper understanding of many emergent global phenomena. The amount of data available in the form of social networks is growing by the day. This poses many computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009